If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2+60x+13=0
a = 32; b = 60; c = +13;
Δ = b2-4ac
Δ = 602-4·32·13
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-44}{2*32}=\frac{-104}{64} =-1+5/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+44}{2*32}=\frac{-16}{64} =-1/4 $
| -w/10=-4/9 | | -23-4m=99 | | 7(-1x+1)=-35 | | 84=-4(-3b-6) | | 5x-6=71-2x | | (2z+2)(z5-3)+6=0 | | 6x-6-2x=38 | | 3x2+14x+10=0 | | 3x-5+6x=-32 | | -6x+6=x-54 | | 13.16+0.09x=14.36+0.15x | | 60x+160=930 | | 144=x+5-15(x+5) | | 2x+8+6x=0 | | 3x+4=20+4 | | 2(d +1)=5d –7 | | .3x-12=2x-2 | | 3x2+-14x+10=0 | | 41=-17-3t | | -5.6-6x-4.1-2x=-7x-3.3 | | 5b+4=7(b+1)-36 | | x^+49=0 | | -3(2-x)+x=8 | | -2+a=14 | | -64=6a+2(3a+4) | | -4x+6=x-54 | | 1/3x-12=2x-2 | | 11x+8=115 | | 12–2c=4 | | n4-2=2 | | 5-3x+x=-17 | | 3501=3(x+62)+4X+2(2/5X) |